Handling Big snakes on Visual Studio

In the last post we discuss on setting up a Windows rig for deep learning. If you still haven’t setup your machine, go do it first: D

After getting the so called big snakes; python and anaconda in the machine, we should have a proper IDE for coding.

There are many good IDEs you can use in Windows environment to code in python. Pycharm, Spyder are some popular tools.

If you familiar with Visual Studio, the so-called father of all IDEs, python works smoothly with VS. There are few configurations need to be done.

c1No need to purchase Visual Studio enterprise or ultimate. The freely available Visual Studio Community edition works fine. In 2017 version python comes along side with the default installation options. For the later versions you need to install Python Tools for Visual Studio (PTVS) separately.

https://docs.microsoft.com/en-us/visualstudio/python/python-in-visual-studio

Refer this guide for more details.

The python environments configured to machines can be seen from ‘Python Environments’ pane of Visual Studio. (If it is not there go for Tools -> Python -> Python Environments)

c2

By default, your Anaconda environment and default python environment should be there. First Refresh those environments to support intelliSense and grab the installed libraries for the DB.

For our deep learning experimentations, we configured a separate python environment before. To add that environment for visual studio follow the following steps.

01. Click Custom on ‘Python environments’

02. Go for anaconda environments and activate your pre-configured environment for deep learning (Mine is tensorflow-gpu)

c4

03. Copy the interpreter path of the environment

04. Insert it for the interpreter path and click “auto detect’. Visual Studio will detect the rest

c3

05. Click Apply

It may take few minutes to refresh the packages as well as the intelliSense. Make the configured environment your default and open the interactive. You are good to go 😊

Advertisements

Configuring a Windows Running Deep Learning Rig

When it comes to deep learning; the first thing comes to your mind is the “Computation Power”. The thousands of matrix operations that you going to perform when training the deep neural networks would take ages if you going to use only the CPU to do it.

The solution is the Graphical Processing Units (GPUs). introduction-to-multi-gpu-deep-learning-with-digits-2-mike-wang-22-638

There are few ways that you can get the power of high computation power for deep learning.

No offence, in my experience Linux operating system (What I’m using is the Ubuntu flavor) comes handy with performing deep learning operations in python because the terminal, bash commands, open source editing tools, GPU hackability is bit easy for me in Linux.

But the recent windows and Visual Studio updates too make it possible to do deep learning on your Windows rig.

Here are the steps I’ve followed to configure my laptop to perform some DL based computations with Tensorflow and Keras.

The laptop I’m using is an Asus UX310UA with Core i7 7th Gen processor, 16GB RAM and Nvidia Geforce 940MX 2 GB GPU.c2

I’m running Windows 10 Enterprise 1703 build on my laptop.

Please note that the following steps may change according to some conditions.

  1. Check the GPU processing capability of your GPU

If you wish to use your GPU for do parallel processing, first check the CUDA supportability of your GPU device. More the CUDA cores you have, more the computation you get. As an example, Nvidia Tesla K80 is having 4992 CUDA cores while Geforce 940MX equipped with 384 CUDA cores. The GPU compute capability should be 3.0 or higher.

Check whether your GPU is listed in the list.

https://www.geforce.com/hardware/technology/cuda

 

  1. Install CUDA Toolkit

Installing CUDA on Windows has a dependency for a C++ compiler. The CUDA version I’ve installed in my laptop is CUDA 8.0. Along with that I’ve installed Visual C++ 15.0 compiler. Refer the following guide to install CUDA Toolkit for your computer.

 http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

 

  1. Install CuDNN Tools

For faster computations, you need to install CUDA Deep Neural Network toolkit. Depends on the CUDA version that you’ve installed you should select the appropriate CuDNN version. In my case with CUDA 8.0 Both CuDNN 7.0 & CuDNN 6.0 works. When it comes to package installations, CuDNN 7.0 throwed me some errors. So, I went with CuDNN 6.0 and it’s working fine on my machine 😊

Note that you need to do some manual file copy pastings in this step.

http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-windows

For safe side, restart the machine now! It’ll then pop up any additional dependencies that the GPU ask you to install.

 

  1. Install Anaconda

Now it’s time for the Big Snake! Anaconda is the leading Python data science platform. This framework comes with many pre-installed essential libraries and configurations that you may need regularly. Go with Python3 since it is the latest.

https://www.anaconda.com/download/

 

  1. Create a python environment for your experiments

Python comes with hell a lot of libraries that you may need to compile your program. So best thing is to create a separate environment for deep learning and use it. It’ll secure you from tangling the dependencies among libraries.

Go for Anaconda prompt (Find it on start menu – Advised to open the conda prompt as administrator) and push the command. We are using python 3.5 at the moment. ‘tensorflow-gpu’ is the environment name.

conda create -n tensorflow-gpu python=3.5 anaconda

Activate the environment

activate thensorflow-gpu

c1

  1. Install Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. We need it! Make sure you are installing all of these inside your environment.

conda install theano

 

  1. Install mingw python

Even though python is an interpreted language, you may ned to install Windows C++ compilers in some cases. For python 3.5/3.6 you can use Visual C++ 14.0 compiler.

conda install mingw libpython

 

  1. Install tensorflow

Tensorflow is an open source library for numerical computation. You can install the cpu version if you don’t have a GPU in your machine just by installing the CPU version.

pip install tensorflow-gpu

 

  1. Install keras

Keras is a high-level neural network API. It can sun on top of TensorFlow, CNTK or Theano. For coding easiness will install Keras too.

conda install keras

 

  1. Update all the packages

conda update –all

All set! 😊 now you are ready to start coding. Start with your favorite IDE. For me, I prefer Spyder and sometimes Visual Studio. You can directly go for spyder from your Anaconda prompt or Anaconda navigator.  c3

Will discuss on dealing with python on Visual Studio in the next article.